Mutational spectrum of FAM83H: the C-terminal portion is required for tooth enamel calcification.
نویسندگان
چکیده
Dental enamel forms through the concerted activities of specialized extracellular matrix proteins, including amelogenin, enamelin, MMP20, and KLK4. Defects in the genes encoding these proteins cause non-syndromic inherited enamel malformations collectively designated as amelogenesis imperfecta (AI). These genes, however, account for only about a quarter of all AI cases. Recently we identified mutations in FAM83H that caused autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI). Unlike other genes that cause AI, FAM83 H does not encode an extracellular matrix protein. Its location inside the cell is completely unknown, as is its function. We here report novel FAM83H mutations in four kindreds with ADHCAI. All are nonsense mutations in the last exon (c.1243G>T, p.E415X; c.891T>A, p.Y297X; c.1380G>A, p.W460X; and c.2029C>T, p.Q677X). These mutations delete between 503 and 883 amino acids from the C-terminus of a protein normally comprised of 1179 residues. The reason these mutations cause such extreme defects in the enamel layer without affecting other parts of the body is not known yet. However it seems evident that the large C-terminal part of the protein is essential for proper enamel calcification.
منابع مشابه
FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta.
Amelogenesis imperfecta (AI) is a collection of diverse inherited disorders featuring dental-enamel defects in the absence of significant nondental symptoms. AI phenotypes vary and are categorized as hypoplastic, hypocalcified, and hypomaturation types. Phenotypic specificity to enamel has focused research on genes encoding enamel-matrix proteins. We studied two families with autosomal-dominant...
متن کاملFam83h null mice support a neomorphic mechanism for human ADHCAI.
Truncation mutations in FAM83H (family with sequence similarity 83, member H) cause autosomal dominant hypocalcified amelogenesis imperfecta (ADHCAI), but little is known about FAM83H function and the pathogenesis of ADHCAI. We recruited three ADHCAI families and identified two novel (p.Gln457*; p.Lys639*) and one previously documented (p.Q452*) disease-causing FAM83H mutations. We generated an...
متن کاملEvolutionary analysis of FAM83H in vertebrates
Amelogenesis imperfecta is a group of disorders causing abnormalities in enamel formation in various phenotypes. Many mutations in the FAM83H gene have been identified to result in autosomal dominant hypocalcified amelogenesis imperfecta in different populations. However, the structure and function of FAM83H and its pathological mechanism have yet to be further explored. Evolutionary analysis i...
متن کاملUltrastructural analyses of deciduous teeth affected by hypocalcified amelogenesis imperfecta from a family with a novel Y458X FAM83H nonsense mutation.
BACKGROUND Nonsense mutations in FAM83H are a recently described underlying cause of autosomal dominant (AD) hypocalcified amelogenesis imperfecta (AI). OBJECTIVE This study aims to report a novel c.1374C>A p.Y458X nonsense mutation and describe the associated ultrastructural phenotype of deciduous teeth. METHODS A family of European origin from the Iberian Peninsula with AD-inherited AI wa...
متن کاملMissense Mutation in Fam83H Gene in Iranian Patients with Amelogenesis Imperfecta
BACKGROUND Amelogenesis Imperfecta (AI) is a disorder of tooth development where there is an abnormal formation of enamel or the external layer of teeth. The aim of this study was to screen mutations in the four most important candidate genes, ENAM, KLK4, MMP20 and FAM83H responsible for amelogenesis imperfect. METHODS Geneomic DNA was isolated from five Iranian families with 22 members affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human mutation
دوره 29 8 شماره
صفحات -
تاریخ انتشار 2008